Blog

What if I told you that bibliographic references can be structured?

Last year I spent several weeks studying how to automatically match unstructured references to DOIs (you can read about these experiments in my previous blog posts). But what about references that are not in the form of an unstructured string, but rather a structured collection of metadata fields? Are we matching them, and how? Let’s find out.

Reference matching: for real this time

In my previous blog post, Matchmaker, matchmaker, make me a match, I compared four approaches for reference matching. The comparison was done using a dataset composed of automatically-generated reference strings. Now it’s time for the matching algorithms to face the real enemy: the unstructured reference strings deposited with Crossref by some members. Are the matching algorithms ready for this challenge? Which algorithm will prove worthy of becoming the guardian of the mighty citation network? Buckle up and enjoy our second matching battle!

Matchmaker, matchmaker, make me a match

Matching (or resolving) bibliographic references to target records in the collection is a crucial algorithm in the Crossref ecosystem. Automatic reference matching lets us discover citation relations in large document collections, calculate citation counts, H-indexes, impact factors, etc. At Crossref, we currently use a matching approach based on reference string parsing. Some time ago we realized there is a much simpler approach. And now it is finally battle time: which of the two approaches is better?

What does the sample say?

At Crossref Labs, we often come across interesting research questions and try to answer them by analyzing our data. Depending on the nature of the experiment, processing over 100M records might be time-consuming or even impossible. In those dark moments we turn to sampling and statistical tools. But what can we infer from only a sample of the data?

RSS Feed

Recent Posts

Blog

2019 September 13

2019 election slate

2019 August 23

Archives